148 research outputs found

    A new species of Gyrodactylus (Monogenea, Gyrodactylidae), an ectoparasite from the endemic Iranocichla hormuzensis (Teleostei, Cichlidae), the only Iranian cichlid

    Get PDF
    Iranocichla hormuzensis occupies a biogeographically peculiar position. This endemic of southern Iran is the only Iranian cichlid. While it is phylogenetically related to African oreochromine members of the cichlid family, it remains unclear how it has dispersed into its current range. It is one of the many lasting enigmas of cichlid biogeography. Monogenean fish parasites may provide useful additional information in such cases. Therefore, I. hormuzensis was examined for these flatworms. A gyrodactylid parasite is reported and compared to congeners from the Palearctic and from cichlids. In this way, we verify whether it shows affinities to parasites from fishes that are either biogeographically or phylogenetically close to Iranocichla hormuzensis. The species is new to science and is described as Gyrodactylus jalalii sp. nov. This is the first description of a parasite infecting I. hormuzensis. Because of the fixation method or age of the material, DNA could not be isolated. Due to the lack of genetic data, no conclusions can be drawn on its phylogenetic positioning. Indeed, Gyrodactylus phylogeny cannot be inferred from morphological characteristics alone. Moreover, the congeners phenotypically reminiscent of the new species belong to a Gyrodactylus clade which is highly diverse in geographic range and host choice. Hence, there is no evidence linking the new species to an exclusively African or cichlid-bound Gyrodactylus lineage

    The Monogenean Parasite Fauna of Cichlids: A Potential Tool for Host Biogeography

    Get PDF
    We discuss geographical distribution and phylogeny of Dactylogyridea (Monogenea) parasitizing Cichlidae to elucidate their hosts' history. Although mesoparasitic Monogenea (Enterogyrus spp.) show typical vicariant distribution, ectoparasitic representatives from different continents are not considered sister taxa, hence their distribution cannot result from vicariance alone. Because of the close host-parasite relationship, this might indicate that present-day cichlid distribution may also reflect dispersal through coastal or brackish waters. Loss of ectoparasites during transoceanic migration, followed by lateral transfer from other fish families might explain extant host-parasite associations. Because of its mesoparasitic nature, hence not subject to salinity variations of the host's environment, Enterogyrus could have survived marine migrations, intolerable for ectoparasites. Host-switches and salinity transitions may be invoked to explain the pattern revealed by a preliminary morphological phylogeny of monogenean genera from Cichlidae and other selected Monogenea genera, rendering the parasite distribution explicable under both vicariance and dispersal. Testable hypotheses are put forward in this parasitological approach to cichlid biogeography. Along with more comprehensive in-depth morphological phylogeny, comparison with molecular data, clarifying dactylogyridean evolution on different continents and from various fish families, and providing temporal information on host-parasite history, are needed to discriminate between the possible scenarios

    Temporally consistent species differences in parasite infection but no evidence for rapid parasite-mediated speciation in Lake Victoria cichlid fish

    Get PDF
    Abstract Parasites may have strong eco-evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 non-radiating lineages, to explore the opportunity for parasite-mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species-specific resistance, consistent with parasite-mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite-mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite-mediated speciation, because it is host species-specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to non-radiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus-mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.Peer reviewe

    Parasites of Moroccan desert Coptodon guineensis (Pisces, Cichlidae): transition and resilience in a simplified hypersaline ecosystem

    Get PDF
    Sebkha Imlili (Atlantic Sahara) is a salt flat with over 160 permanent holes of hypersaline water generated in the Holocene and inhabited by euryhaline organisms that are considered to be relics of the past, including the cichlid fish Coptodon guineensis. We surveyed the fish parasites four times over one year, to i) identify the parasites, and ii) determine possible seasonality in infection patterns. Over 60% of the fish were infected by one to three helminths: an acanthocephalan in the intestine and two digenean metacercariae in the kidney, spleen, liver, muscle, and mesenteries. The acanthocephalan Acanthogyrus (Acanthosentis) cf. tilapiae was identified morphologically and molecularly; only one digenean (the heterophyid Pygidiopsis genata) could be identified molecularly. Both identified parasites were present throughout the sampling periods; the unidentified metacercariae were present only in summer and fall. Mean intensities, but not prevalence of infection by the acanthocephalan, reflected a biannual pattern of transmission. Infection accrued with fish size, possibly due to cannibalism. Because the water holes include only a few invertebrates, the intermediate hosts of these parasites can be inferred to be the gastropod Ecrobia ventrosa for the digeneans and either the copepod Cletocamtpus retrogressus or the ostracod Cyprideis torosa for the acanthocephalan. This ecosystem appears stable and provides a window into the past, as the acanthocephalan likely switched from freshwater tilapia to C. guineensis when the Sebkha formed. However, this is a vulnerable environment where the survival of these parasites depends on interactions maintained among only very few hosts

    Публицистика Джафера Сейдамета в период эмиграции (1918-1960 гг.)

    Get PDF
    Background: Parasite switches to new host species are of fundamental scientific interest and may be considered an important speciation mechanism. For numerous monogenean fish parasites, infecting different hosts is associated with morphological adaptations, in particular of the attachment organ (haptor). However, haptoral morphology in Cichlidogyrus spp. (Monogenea, Dactylogyridea), parasites of African cichlids, has been mainly linked to phylogenetic rather than to host constraints. Here we determined the position of Cichlidogyrus amieti, a parasite of species of Aphyosemion (Cyprinodontiformes, Nothobranchiidae) in the phylogeny of its congeners in order to infer its origin and assess the morphological changes associated with host-switching events. Methods: The DNA of specimens of C. amieti isolated from Aphyosemion cameronense in Cameroon was sequenced and analyzed together with that of Cichlidogyrus spp. from cichlid hosts. In order to highlight the influence of the lateral transfer of C. amieti on the haptoral sclerotised parts we performed a Principal Component Analysis (PCA) to compare the attachment organ structure of C. amieti to that of congeners infecting cichlids. Results: Cichlidogyrus amieti was found to be nested within a strongly supported clade of species described from Hemichromis spp. (i.e. C. longicirrus and C. dracolemma). This clade is located at a derived position of the tree, suggesting that C. amieti transferred from cichlids to Cyprinodontiformes and not inversely. The morphological similarity between features of their copulatory organs suggested that C. amieti shares a recent ancestor with C. dracolemma. It also indicates that in this case, these organs do not seem subjected to strong divergent selection pressure. On the other hand, there are substantial differences in haptoral morphology between C. amieti and all of its closely related congeners described from Hemichromis spp.. Conclusions: Our study provides new evidence supporting the hypothesis of the adaptive nature of haptor morphology. It demonstrates this adaptive component for the first time within Cichlidogyrus, the attachment organs of which were usually considered to be mainly phylogenetically constrained
    corecore